I Sverige och Finland utsätts företag och offentliga organisationer för ett ökat antal cyberintrång. Attackerna riktar sig mot kritisk infrastruktur, med rapporterade incidenter i hamnar, flygplatser och industriella nätverk.
Så ska AI stoppa cyberattacker mot trådlösa nätverk
Cyberattacker på trådlösa nätverk hotar både företag och samhället. Genom Trust-projektet utvecklar Stc:s (Sensible Things that Communicate) forskningscenter på Mittuniversitetet och finländska universitetet i Vasa en AI-lösning för att upptäcka intrång.

Någonting är fel
Du är inloggad som prenumerant hos förlaget Pauser Media, men nånting är fel. På din profilsida ser du vilka av våra produkter som du har tillgång till. Skulle uppgifterna inte stämma på din profilsida – vänligen kontakta vår kundtjänst.
Techtidningen premium
Läs vidare – starta din prenumeration
Redan prenumerant? Logga in och läs vidare.
I Östersjön är hotet särskilt akut, där fartyg har drabbats av falska gps-signaler. Även flyget har blivit påverkat då externa nätverksstörningar hindrar flygplanen från att lyfta i tid.
kpZarMrTM35pLa7sKtp0MxpSDnu/EgKi7I6v396L4shd3jyx38I94vJC7bhRGGmUoG1kdboEfsLJDeaJPUCDh6i+NPrTi8z22w7CpdpAFNrfY1dpa1rNv+BGiJkYrbxJ58TMdB0tqXFwyf8IDEm5ABvKGAmg7LPXrXwwvEvRZt4ZR1RwaduDyvqRrL1IjOQ7SKgB2rAx/RQIDGmQsHMoBEKVe9Ge42zkx9vngZgU7oC2tiKAKIRCxVFxNc5XN1FkcN+3ld3ownv/Owjdb9jS7j9sMPUUD4Kp3E8i6HgonVB6yQ8UzgDWkf6WEveaz7AzYtRPjhNMEnpO1jEkgzntarrcjhOGZi76wPgqmRLlSdh0j+stdY0mE7Gx8Mjf0raRQBj2ISSs/hZ87bOF5J6Aiclz1DAe2Z38/0j0YICWwJWd+npcbolCQHx0rWS5AUpeX4lBwpIK1LTopQKS+G2dSjwISs5WYi7BEDP3iqKldMLWGSDsOr08m7eWr7dPoS2d8sihcFNTd213Xdp3GUGO+nT/LEfKm17JbynEmQPRdSp0MkbSHDcSS0qwfv+BW5/Dc+U16zONEkxCgIblYsp/Q6adzxEmp6noQ1cINqL21bqzzJyTN4LDPd+WzSPHl2An40zpJo8fLp/TnF6rkHOf0D65aSq6D1YFUbBQ+/VUlFEijsUIfxI7nILdDoHwm7vT4gpjLEPlY8/6bkJD0gmBTwbSeoZ0MZH+c7R0zOjLYNQhZkWbDmUGa5kVbqsZ3pfEkVNZiByt1A7CQfPpQyNLRpH2rzglE9TM0n+Z4ZHd8tUj91RnAQHZeMpxxuNeXHYf+rOIiZqCeGGJZllCg37aE8N3ZPag8DY2s0WLxNF5RSt3qc+w4hDNiYW8eFVJojuv94Sm9r8N/MKjk1iwZ7fj0RQyOfxOj4danyxzHkUxdXcqoasLBmLZY2Pdw5amdRM9aPSQuewzKmp0hS1bo/Arrn2KyV1LfKcJH3YcB/q0i/j8mmd/9EaAOTDA2BozMQeFJkzxsEyrGPst8fyiHGdJctBF1OULBpox1ycBgxDilC971T6mMHQSi6SY7jeUDTPHcAjbK6l2E5ljWHjGF366+cGTNlAWDge4bDdCT/1p912WbWv40+HOTL+55C5ia5dYqU+Lqq8pSgqBCXL3HiVIM/wzUrXQiOH8Vb6wa9uliSwtpp34j1QXaN5f0f743VS3/SqSrIFlqMCw7HnVsesXz/8DeZ1ChclW1h16ums+wSA4SuDIYByai9ZCPeMobcCfgRGYd66pe6GzMiecJ6hS1Py/eJj6ju47pmQG5twGGasyhTtWTjAg0Vxl9eD8VWbz7A8ck4R3napK4FLxp2tgnleUJy5Fc/lX3URXEiVxxopDkdT0SkYzAJ1wYzEGQIFldbCAHO2KbqT3L116oQFrAoKKAEcqrHkQVulVDJ9nsrIKpUdwXxTCy+4rCHZlMLmcs6iuZfzWKyZ72qvOA9DpWd1APquZb5gO6MFSqA99c5aioNWwGo6VhIvhky8nQ8yo7vtd5fo9KlSHbcnirRXltQNLPSoUA74t57CNe/OPbrBipV1FmsquC0I8F7JD23Rn7JksxF7VqyJOKxtRQYkrTwMfMB2JEsayVDIegPTC4zGYB9VDCfJHH4u8e/irjiENoqFUVc1F2Y2SFJkLyNzlctnVt73y6Pf1Y9kfF3oE1XXatyDQAz4kmUY4P88bsuvs9Hj3nXqztOAUve5O+dqK8Y9fH7mUefq3m7tHDAJ0eHrzf3GBH/uHp3MinAZel8OmPYQQ+hQekYvMDa7R87lL4lO5Zo2r5mURZqdX629HpAqBPJ+ew16GXL7OqsizXjVcdleOE7nLb0VpNdKbFxkHWtiSZpnP423aVlJSeoy3aboC05iikSW1iwWPjEKjNF4NallPXzHaxUHD94r1QSrNBGMwL9tIgZSvU5QA+/ZKQQ8KXZ9tK7JCElFTaA5M5DB86yRjFiWsabOM2t+04iwWS0HEoQwgtciZhJmkbVosXNseAhQjhGOamhrfQppF+/04ciUBvNxiaZqS+GeAq908gvyy7w23Tvwyk5x2ymyIvVyuc/b0b8LfZwvnPAWVGUZ92i+RQyE9J3uAAcx5bxNvEjD+TqHwzhLLbVAKpprxr+ZAvM05Oa2djEIUCZRIksGiwSTq+37dwnHfVLuiHOzzllBIG+1bbg3awWV6iKod+jv0pvyHQqK+p2eKv5GkDbCrlZpCUIWS6vAkYmBkEDr1QeevrZCt1b1TH6U5VHDLwSkjbfNS3Lprt9Ceaf2qUCkTyd9MFdPkBXxciaQVVzLzJc6zKAPeC9UISssgSPVAvxiu7aMStPJsWQZKus5jLdgM+P0hQGNblYlVi3hiqHtkN/UWmZXmpQTLoWpruDot5MXVGdhYu7jDW7ohVQxfXiXG5Lvp16q1uK7x74TtYW1cxhOqYLhfcykR5pF00z99LGLUiQ3VCw9LSolEVvdUGGIZm5MV5v8rMk+g69DnH6/2U7eDvpYfg5Q3mDc51hYRSy5na/day+ePZrx+lympD+zCU8ZVFox1WqCUaOofqkO5F7FT7M3KWBedZ6GyxwUUYt3Pkzel8C1HJei8Xy39DS/YZUvzGIyn7b/IbkEHqmf2LGmV45HPQMBpiO744eXEmGlbTPAwtQbfBCu/ofwHHZ1OyOtTH6zpjiJSMs8lqo2D0D3vGipWWIyldabm548mYhElfuV+ys/hqOB0CaETkjCSO9Gf45ZyoP7hLWMq+550q+Tcx6LfLsk5ofrlMEpiMRmZKndgRatht/HgxagytpKlalymXJ+g4wx1a86gNMSkvXminanvUlwFb9s5MuZsCO7uucoK3E2rKzhXi9PdyrrQRnGhb0530OICOCTCu5hXL2QnbXFMeSG+KjQVJb/RfN6jcQZsk9LR+UQWvOUNIJc4nNwIEfwdjVumd2lVIlhEgoEWH2vm+INDOh+ZFUZvqrlZcYlDyM6z0OZwzK485O7rrYY8fVTjiR3LAFxvY92IEoeaBbEKid/3KLtvGpGPzAG9+MgV6PlZTyyon8gn196onFbWWPdFNnPpHGeeV3IgK2sytStGDfm3NspWWV2gtLzk2fJ+ipzCJqV9perPQ/2T4nYPGTv7uN/cr19uJT6NcYPXY5i0NrAReTeKcos+BNk/+L5v1u0GnRcegrtgjYMpr19b38NcN2nWsgIPOHAQDqToxiQRXjSY+2dhXOSB/G11Wi8QH0c8zEMx0EwOJ77smKBgaKLBbjyqq3T7DBOG/1LAdxN4JkTiztl6qmYsDPLcu31tSxqqsAAjxjeBKOrxCFXBPF8dNe2PEwk3JNEAgFAaXAeV+pNiQ9Pgu0LDg1TGOBPYG0azXsPEBAxtr20MmR6JlIDGM4tvCIXifLXcRPF4SVOuedWml4Mia/QQCmNadWTmA5Tf0fTg+/wXo7Rgh6wA56wo1Bx4gjqvKC+Y/Sp/OOrhXqDxx5jxRKTFWjfSOdG0lF+PYSbSqkpSLYiG5nMAAL7WiMFHh5H4+WgR/utKHDAdThWxJA7Oj5+vlpSfJN9WV9KYYLqOebg4970siIcMQ5XuDIv09l2bQJnPq0sKLkiJVuaggQ5v4v6J/P05azjIwfoQF3EHMktcs/+rZJ4b5TBkwQKrW9QcqRqSKc1nmrNugJBWnS70FPVHybxquHV83Mjno/jqdDPPy3+1jlW/hhWe9iqi6p6gFeVlYjNAOIaUr5+4XeOZFZTeZVfJ+XKgTcto5uNRnD1SmoC+IloykHpGL0lx7b7CGZjF58ZBjIwC8T/F4yFw6T4PQuDRoeLSy56xBxXRylsbvH6WgxaWudw7MO/d0/uYKRfxKD6Em9IYKh4V554+x5PU1mw6pCDy7YjBelY+keovVNa09uS0BSLZJV6Hmdg2Oty+nbEcP+KZbuGbJfawBsDo7rGxMw/cW4NuqLxHSnY1X5v9zzgor+Bb5kzLI98SXsfXKdEJxNTayZPoehNFj4dmaYS/RaIenFKxjvnbVejS9H9Sxx/u+gSTWAApuPUFCoeLB0FxngBA77hqzGSVAi6iZnhOmLjDkq5TeeQHZBDUHxgXqo0Y+6kix7hqnkPv6fg86S7O2bgzV94wMm+2jmHhR8w+7eN59QdUHXOQ7DtP8x5oqZ/9hrgn5/TxIsSOceO0SHwqtKY4kDmoo7CGLS3gI5WdWYZpljuLK/EKOXI+A49lyofZV84waJjkQawtq7Y9TPjMq8TOQkndYSMOyaomBsWSUiUJVaebPZL0zGL6+VxK7kbbvgZxAeyiduAXntgRWJ5KDYuX4j7Fp7KutIyy4HxPTaxLJS9Z6KGNeaN05fYnjqQFsrxnWbFhgWSwBJCouNd+wkacY4DS3lcWwWXtVOoXhtOAALcYP6VzcjHmfiKPqUe5bNsX9uekc01DqCg5LGA285DBNrdsXQe9WX6iv2a1HGpdac8v/1Rs3a+p6EJWH0Iy3UDbrcbt0AQ3DiTm7D48UZtnxyQGedMueDcfhdrFD5u9XC9oU08hM3c1Fz4XQ/rOQCrlUMtpsIm8dLgIXyiDYRlJCTqT0pc1xiCv3k8FPT1NKTFWBtH4xUNAj+yVWq4ra8vt52QzBSIer1Eta1vlB3hmPpv+4HeIvfazbWa5lQK61MhDw7TDz5GHyJ1oFThRzx+V7/5D5iEv8DB2tZ6TK3CmMZtMPdBKL03YeAj6Bst3gGf4j/XE0QR6cdr63goJXjvMrpxvmq2MzMP+2V4ROFk4GN4JhVgYn4i7OszTC7EYYCSkwP7sR2z5L/+CFgS0nc3qNaIYbQJFxrD1LR43qTGZOaD2AS+xjNnJDAMdwgGZsJQf1lFTfFCl8/ZJtOxLuWDbBGsH+7SLv1wQhr04vAR7cqgXf4yNhUj7UNaZ8xpsw/OmNxxbZ8bhp8G7rYjtFSvW6jpgCana9PIteYfn0yF5G8Mur+OVq7iJAD65pc2wz8zW87mO/boqT4UPkso2kGsThSIYtQBMffCNQSCM2RR4Why3QGOtTaOIBW0ADyLGD+WFbuzexx/dvguWKboObfGQCkiqcjNqCY4zmMipNdxNbgJExEr0fQEOITP3/jqUMCkb52SVGfHH/SRGEUi9bLMPEoWka3pqpli7wof4dPA8DGVmqJcugg/Niqgp55nr1yoRAwWF5XjqNxr/TMZJCVQ96B9EdWR4J52PGABEpB9bqG/acEreztyjYETy4O+cLWsbZnpgwlswaHxAJde1BKZNF+8le7jEGE37zwtp1u3GG1DbHRry4Q2XevCQEOSazBrAz2MzUrg3lmjkL6ra4yznB5p0dnmP7ZsgOfP7n/sdt+qtAw3X59p2E9yQ8EKzCRx940A4+PR5WOpCuWY4wN4qkpSvAlQF/Ke2YUPqUzQkyWn92IlX7I55A8yC+vIGMrWt02PqaTK6MsCsolb7s6X6hivres1R9EijPQ483KHU0YqETQ01g6/1z0XFMnEAuzmji2uTS9IUG2xnNgscrA4Hf16QMOUcJsTVAqXJCPpnwnNKntnoQkFOL6NlrM3TZTjVp//ScoJWb2RFgC3dXRah2Un61xNR4UjbQcCzPpPvX8LFi/j51X52RUByrdXL93QjCphVAxHnEHfkZ8fccKrq1udNTnkcQ8aFWA7KQHq3TUVNPHaDNwRQVg4OG5te1TOSGwDrIDYqPac6Nbw4awdvYZU0fAMVEYtpRLKM5m/9z3LlTCtiq8VyCyYl4O3k3McuQnz8oCLiynKD3ztmfriLBc6e+YGJyVZtkIT9C6GsuXiWEFaAepNKjt+/jhPCRaIwo2Pdc7TndSoWa7oElYW3LjPKsXgSroFw82DjRzDZ2lwX7SgeiVzWPCQzxkU6svqaecdbiu2ClyvHHLx5NkIha8Z2cG7/628pQEu/+GiDbJDiGoL/VR1IOUPavQmUTdCPY2y9iSQujVBcW0WcgN8Ip3TSgLMrGSnHm/VzZgcxSZUGu+OikFyiREnbWPrGvEphuqpODEgnPDIF1SZOKNsbz1Ey8rSOj3/qe+nrWWE66wxqHaQXcjsPwJOceIvCufmopwYWmhf7KcR6LJmA1Ju6/5gYdv88ijOi24tVc/YvUXjWZQ+M/VtlayM+rF7y39dlqZUizPlQytT/3vz3q+6nz3MQboIALiY/lqroxdPt3Tu823VNvQzzRXBZxmLH0RqUeL/0iMPjGW4LZGZpWeLliR4qjEGMe8rcEnANf2cTrqY7838j/9+wNw4TnRjcT9Ec7LH71AmN6cCsPP840U5TAd355R8pfZG3O/NW0oB6fD9tlb7+Z9tt9TwPlmzraOHQezDeIMazvDjalL3fVgfEmgPJhWssV2+c2ytnH1vldBfofWLL2djexctKdTx6D0CryEFHNrBPdS2uTeeKGijg/uq67HnPwOaPTg7EnHl4KU8CnVUMyRmNpAfV4Bw6qL40liZNVzbb1AOYalA1nVwk1IhnLDUiyPKOCRVcwVVUNszKX2CUY9brsxsQrag//XkZuQNPoM1EqrZ379qmKzkOk50stZ6MLDVACrnBkZJ8co//FIqyEi3/HaLBqHndN0h3Zn3cW0Shw6JLmK+/W8jCXu+RF7FWwn7O/FzsZEJxJUmo4YDCoyIpApbf+4nWs/iWrg9qrgRSY5w3EpWjljCqvo3YCAD4L23cln2UzR1vjedfB2oimzaJlnq3O/LXXc8ez7lmEx8y6d6XikcGZ/MGB8uAyywnEv82t/jvpW/XmmOysYS3qYaMoqayPWYSmPzJK4pYTuFNTUffpfrQnV2V4MJmaQ1mqcsGO1fvvbbil/9quG3ZjcoDnU25M/2zHOTMQpbaEzU5yHj8zjJJfClmM+eYlxqWh4mfzYyqMSgIxu5E08XF5UxrXVCCJluqyCkObCOhrQfctKAUwiRPzomc2XQgr0Pkvw3rOWF42tfTHGGxXwTFz6/WmRTrhm3LkdCDSZ+4m+j1G8ZWs9vE7iV9+KqbLpm4XvaFf+oYRjX0VRY4BKmV1JgI43ZzewN2MIR7Tv5sUgROdOXl
